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Abstract  
The role that human capital and occupational factors play in influencing driver safety outcomes has gained increased 
attention from trucking firms and policy-makers.  This paper examines the role of these factors, in addition to 
demographic factors, in influencing crash frequency at the driver level.  A unique driver-level dataset from a large 
truckload firm collected over a period of 26 months is used for estimating regression models of crash counts.  Based 
on estimates from a zero inflated Poisson regression model, results suggest that human capital and occupational 
factors, such as pay, tenure at the job, and percent of miles driven during winter months, have a significantly better 
explanatory power of crash frequency than demographic factors.  Taking into account both the zero-inflation and the 
count model, results suggest that higher pay rates and getting a pay raise are related to lower expected crash counts 
and to a higher probability of having no crashes at all, all else held equal.  Although the data for the study come 
from a single firm, the evidence provided is a first step in examining the structural causes of unsafe driving 
behavior, such as driver economic rewards, and crash outcomes.  These results can motivate other firms in 
modifying operations and driver hiring practices.  They also support the need for a broader examination of the 
relationship between driver compensation and driver safety.   
 
Keywords: truck driver safety, compensation, economic rewards, count model  
 

INTRODUCTION 
Although the involvement of large trucks in fatal crashes in the U.S. has dropped substantially 
over the last decade when measured per unit of travel, the public health burden of large truck 
crashes, as measured by deaths per 100,000 population, has not improved over time because of 
the large increase in truck mileage (1).  Crashes involving trucks impose costs on truck drivers, 
road users, trucking firms, shippers, and the public.  In 2000 about 5,211 people died and 
140,000 were seriously injured in large truck-related crashes (2).  With trucking operations 
accounting for almost one third of the total freight ton-miles traveled, and expected to grow in 
the future, trucking safety continues to demand heightened attention from researchers and policy-
makers. 

 
The role that truck driver occupational and behavioral factors play in crash involvement 

is a particular area that has received increased attention by researchers and policy-makers.  
Research examining potential modifications to the hours-of-service regulations and their 
enforcement (3, 4), detecting and measuring driver alertness and fatigue (5, 6), and 
understanding driver speeding behavior (7-9), underscore the increasing awareness regarding the 
importance of driver behavioral factors for trucking safety.  

 
Even though an acute research focus on particular truck driver behaviors that increase 

crash risk is useful, it is at least equally important to confront the factors that motivate such 
behaviors.  At the individual level, such factors include scheduling and operational pressures, 
pay rate, pay method, and personal characteristics, among others.  Indeed, over the past decade 
several studies (3, 10-12) have raised questions about the role that occupational and human 
capital factors play in truck crashes.  Therefore, improving our understanding of the importance 
of the structural causes of certain behaviors, such as compensation and driver economic rewards, 
and their relationship to driver safety outcomes can lead to appropriate policy responses at the 
firm and government levels.  Insurance companies, trucking firms, shippers, and regulators have 
an interest in developing such understanding in order to improve the safety outcomes of trucking 
operations.  
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In this paper, we examine how compensation and work conditions are associated with 
frequency of truck crashes at the driver level by estimating count regression models while 
controlling for driver socio-demographic characteristics and individual exposure.  As such, the 
research focuses on better understanding the occupational factors that can lead to reducing the 
risk of truck involved collisions as well as in quantifying the relationships between crash 
frequency and available explanatory variables at the driver level of analysis.  To this end, we use 
a proprietary, driver-level dataset from JB Hunt, one of the largest truckload firms in the U.S.  
Even though the results are not expected to be fully representative of the population of for-hire 
truckload drivers, we find that JB Hunt drivers are comparable to other drivers in terms of 
demographic and occupational characteristics.  Given this, the relationships among the variables 
may be representative of similar relationships in other firms.  Results can be of immediate use to 
individual trucking firms and can stimulate policy-maker’s interest in extending this single-firm 
study to a more general case.  The next section presents a review of the literature focusing on 
occupational factors and driver safety, followed by a detailed explanation of the data, the crash 
modeling performed, and the results and implications. 

LITERATURE REVIEW 
Human capital theory suggests that variations in human capital across individuals and firms 
explain differences in labor force outcomes, such as productivity and safety (for the theoretical 
foundations see 13, 14).  Greater job experience, for example, is expected to be related to greater 
safety.  Similarly, because pay can be considered partly a proxy for different levels of human 
capital, it is expected to be related to better employee outcomes.  In a competitive market, higher 
pay would allow firms to attract and retain drivers with certain characteristics, which will lead to 
better safety records.  

 
The association between driver behavior, driver pay, and driver characteristics 

(education, skills, and other experience) suggested by human capital theory has been tested 
empirically in several studies of the trucking industry.  Krass (15) detects a significant inverse 
relationship between wages and crash risk for the period after economic deregulation of the 
trucking industry.  The work of Hirsch (16) suggests that a substantial fraction of driver wage 
differences may account for human capital differences among drivers.  A recent study concludes 
that trucking industry compensation and human capital characteristics appear to be more 
significant determinants of safety than demographic variables (17).  Even though other studies 
have also supported a connection between driver safety and human capital characteristics and 
driver compensation (10-12, 18), only a handful have examined this relationship explicitly and, 
to our knowledge, none has focused on crash frequency.  

 
Other research has also examined the link between compensation and occupational 

factors such as working conditions and driver fatigue.  Fatigue is arguably one of the most 
important risk factor that emerges from analyzing the role of occupational factors in driver safety 
(4, 6, 8, 19, 20).  Most studies of fatigue have examined the causes and the extent of fatigue in 
truck drivers (for current reviews see 21-23) and more recently the link between fatigue and 
crash risk (10, 24).  McCartt et al. (23, 25) find that drivers perceive the scheduling of loads 
(measured as driving hours and waiting time for loads) as a significant factor that contributes to 
fatigued driving.  Similarly, after conducting focus groups to examine the factors related to truck 
crashes, Chatterjee et al. (26) conclude that direct pressure from dispatchers forces drivers to 
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work long hours under unsafe conditions.  Lin et al. (27) rely on operational data from another 
large national less-than-truckload (LTL) carrier to find that total driving time has a greater effect 
on crash risk than either time of day or driving experience.  Not surprisingly, occupational 
factors also have been associated with illegal substance use (11, 24, 28) and a higher propensity 
to speed (7, 29). 

 
Related to fatigue is driver (and firm) non-compliance with established hours-of-service 

regulations, which limit the amount of driving time of truck drivers.  Using self-reported data of 
498 long-distance drivers, Beilock (3) estimates that 26% of schedules given to drivers result in 
violations to existing service hours regulations assuming that the average speed limits do not 
exceed legal limits.  In a 1992 survey, Braver et al. (12) found that drivers who violated the 
hours-of-service rules were more likely to report that they have fallen asleep at the wheel.  
Clearly, non-compliance with hours of service regulations is also related to negative safety 
outcomes. 
 

In summary, the literature suggests that certain occupational and human capital factors 
are related to unsafe driving behaviors and crash outcomes.  Tight schedules, fatigue, increasing 
demands on drivers, and low pay are positively correlated to crash occurrence, although it is 
unclear if these correlations are carried through to crash frequency.  Given the apparent link 
between level of driver pay and driver safety, one expects that firms would raise pay in order to 
skim the cream of the trucking labor market.  However, this does not seem to be occurring in 
most cases.  Furthermore, on average, earnings of truck drivers and the quality of driving jobs 
continue to erode, especially among non-union drivers (30).  Although speculative, one 
explanation may be that motor carriers do not perceive that the safety benefits of higher pay 
offset the increased costs to firms.  This points to our limited knowledge about the relationship 
between pay and driver behavior, and underscores the identified need to develop relevant 
research that can inform policy-makers and firms.  As such, we address the paucity of empirical 
work regarding the study of crash frequency for truck drivers, while contributing to the 
understanding of the complex relationship between driver pay and driver safety.  

DATA  
A unique longitudinal dataset was used to analyze the association between truck drivers’ socio-
economic and occupational factors and crash involvement and frequency.  The dataset is rich 
because it contains human resources, operations, and safety data for 11,540 unscheduled over-
the-road dry-van tractor-trailer drivers of JB Hunt, a major U.S. for-hire truckload company, 
over a period of 26 calendar-months.  The drivers were observed for two periods of 13 months 
each beginning in September of 1995 and ending in March 1998, with an interval of five months 
between October 1996 and February 1997 during which no data were collected.  Some drivers 
are observed for a single month while others are observed for the entire 26 months, a 
characteristic accounted for in the modeling approach discussed below.  On average, each driver 
is observed for 9.2 months.  

 
The end of the first time period (October 1996) coincides with the announcement of 

changes in the firm’s human resource practices designed to improve driver safety, which was 
then implemented at the beginning of the second period (February 1997).  Of particular interest 
to this study are significant increases in driver per-mile compensation.  Only the subset of drivers 
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who were hired before the pay increase announcement and remained with the firm until the pay 
raise became effective experienced a pay increase.  Pay for new hires was substantially higher 
after Hunt implemented the new pay policy, so drivers who joined the firm after the pay raise 
were hired at a higher base pay but did not experience a pay increase.  

 
The longitudinal nature of the data allows us to study the dynamics of truck driver 

involvement in crashes.  The dataset also is unique because it relies on data recorded by the firm, 
and not on driver recall, a known source of bias present in prevailing survey data.  The richness 
of the data therefore facilitates an in-depth investigation of driver human capital and 
occupational factors for crash-involved and crash-uninvolved drivers, a characteristic commonly 
unavailable in other crash databases.  Despite the longitudinal nature of the data at the driver-
month level, we aggregate it at the driver level and conduct the analysis at such level for two 
reasons.  First, we are mainly interested in driver-level attributes such as human capital, which 
vary more from subject to subject than from month to month.  Second, unobserved variables 
such as vehicle and environmental factors would likely bias the coefficients estimated if we 
performed this analysis at the crash-level.  This would occur if unobserved variables influencing 
driver safety were correlated with demographic and occupational variables.  A driver’s age and 
rate of pay, for example, might correlate with exposure to interstate highways or with the type of 
vehicle driven.  Because type of vehicle and exposure to interstate highways may influence a 
driver’s crash risk, not accounting for their effect can yield biased coefficients for age and pay or 
both.  The failure to include roadway and environmental factors might also be a source of bias. 

Data validity 
A comparison with other sources of information about the TL sector provides information 
regarding the degree to which the dataset allows cautious generalizations to other firms in this 
sector (Table 1).  The first source of data for comparison is a survey conducted the University of 
Michigan Trucking Industry Program (UMTIP) (for details, see 31).  The numbers reported 
cover 233 full-time drivers who are employees and are paid by the mile.  Owner operators and 
those drivers who are paid hourly are excluded from the figures presented.  The second data 
source is a survey of firms included in the National Survey of Driver Wages published by 
Signpost, Inc. Signpost surveys approximately 200 truckload firms of various sizes.  Most major 
TL carriers are represented and the set includes a sample of medium sized and smaller carriers.  
The figures presented are for 102 firms with mileage-paid employee drivers and which 
responded to the UMTIP survey of Signpost respondent firms regarding their pay practices for 
non-driving time (for a description of this survey, see 31).  The third source of data presented 
includes figures estimated from a 1999 survey conducted for the Truckload Carriers Association 
(32). 

 
{Insert table 1 here} 

 
One major difference between Hunt and the first two sources of data is in the average 

length of each dispatch.  This may be the result of the firm’s reliance on rail transportation for 
hauling freight over long distances or due to particular characteristics of this individual firm’s 
freight business.  However, Hunt’s figures are more similar to those reported by the Truckload 
Carriers Association (TCA) survey.  The other major difference is the average tenure of each 
driver at the firm.  Hunt’s average tenure during the time the data was collected is significantly 
less than what is suggested by the UMTIP survey or the TCA survey (although this may be a 
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measurement artifact, as measurement methods differ).  Compensation or demographic 
characteristics are very similar.  

 
It is important also to highlight that using firm-specific data has some shortcomings.  

Most prominent is that the results apply exclusively to the population of drivers belonging to the 
firm.  As a result, any inferences about other truckload drivers are limited.  This limitation 
should be viewed in the context of the relative unavailability of driver-level demographic and 
occupational data to researchers, which may explain the paucity of research on this topic.  
Researchers have primary data in a limited number of studies (for example see 24, 33, 34) or 
have collaborated with firms to examine their human resources and operations data (for example 
see 27, 35).  Even when following the former approach, the ability to make general statements 
remains an issue.  Truck stop surveys, for example, may oversample truckload for-hire carriers 
and over-the-road drivers.  Similarly, self-reports about illegal behaviors such as speeding 
behavior or violation of the hours-of-service rules can result in known response bias in those 
surveys.  

Variables observed 
The outcome variable for our analysis is the total number of all crashes (at fault/not at fault) for 
each driver involving $500 or more of actual or estimated damages and that were recorded 
during the period of observation.  We tested other crash cost cutoff points for the outcome 
variable such as $200, $1000 and $2000, and found no significant changes in the results.  The 
dollar figure for the crash is the firm’s estimated or actual cost associated with each crash 
(including bodily injury, property damage, and recording costs to all parties involved, but 
excluding potential changes in insurance costs) or the firm’s actuarial estimates of the cost based 
on data for past crashes with similar characteristics.  Non-casualty costs to the firm (such as 
productivity losses or the cost of recruiting or hiring new employees) and social costs such as 
losses to third parties (negative externalities) are excluded from these figures.  Drivers have an 
average of 0.38 crashes during the observed period.  Of course, this masks the fact that the 
majority of drivers (77%) do not record crashes during the period in which they were observed.  

 
Independent variables include measures of working conditions, driver’s demographic 

characteristics, two explicit measures of human capital and compensation variables, which we 
use as proxies for unobserved human capital characteristics.  Human capital variables explicitly 
included in the model are driver tenure with the firm when first observed (years) and the race of 
the driver.  Because tenure is not allowed to vary, the effect of “learning on the job” is not 
captured by this variable.  Instead, we argue that the total number of miles driven captures such 
effect because the higher the number of miles driven, the higher the driving experience being 
acquired.  The compensation variables included are driver pay rate when hired (cents per mile) 
and the percent pay raise received at the beginning of the second time period, if applicable.  
Based on the evidence provided by the review of the literature, we expect drivers’ rate of pay to 
be negatively associated with their expected crash count, as higher pay will attract drivers with 
higher human capital.  We also hypothesize that the higher the percent raise, the lower the 
expected crash count.  This incentive effect is due to the anticipated impact of higher pay on 
individual behavior – effectively making unsafe behavior more costly to the individual –.  

 
It is possible that the coefficient for percent pay raise also captures a second effect 

associated with the specific drivers who get a pay increase.  To illustrate this potential bias, 
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consider the drivers who experienced a pay raise.  These drivers remained with the firm until the 
announcement of the pay raise and thus they were the only ones able to enjoy such raise.  If 
drivers who tended to remain with the firm also happen to be safer drivers – a perfectly plausible 
supposition – their safety would in part be responsible for the fact that they got a pay increase.  
Thus, the causality for the percent pay raise variable would be muddled for this subset of drivers.  
We address this potential shortcoming by including two additional dummy variables.  The first 
variable (Cross) indicates that a driver was hired before the pay raise and effectively received a 
pay increase thus capturing the potential influence of a driver’s safety record on getting the pay 
increase.  The second variable (After) indicates drivers who were hired after the pay raise.  This 
variable measures the effect of human capital characteristics not captured by pay or other 
observed driver characteristics, and assuming that the firm is able to observe such characteristics.  
The default category corresponds to drivers hired and who left that company before the pay raise.  

 
Variables that measure working conditions we include are total number of miles driven 

during the time each driver is observed (in millions), percentage of total miles driven during 
winter months (defined as December through March), and the total number of dispatches 
recorded.  All else held equal, we expect that a higher number of dispatches involves a higher 
expected crash count due in part to the fact that each dispatch may be associated with more 
unpaid and unproductive waiting time and more frequently pulling-in and out of traffic conflict 
zones such as docks and urban areas.  “Miles driven” is treated as an exposure variable, at the 
same time that the percentage of miles driven during the winter captures possible seasonal effects 
of the weather on crash risk.  

  
Demographic characteristics we include are age when first observed, sex, and marital 

status.  Descriptive summaries of the data show that the average driver age is 39.69 years and 
48% of drivers are married (Table 2).  Mirroring the industry, drivers tend to be mostly male 
(96%) and white (77%).  The average pay rate at the time of hire was $0.30 per mile and the pay 
increase averaged across all drivers is 9%.  The latter figure substantially understates the pay 
raise because only the drivers working with the firm when the wage raise went into effect (24%) 
received the pay increase.  Neither drivers who were hired during the first period and left before 
the pay raise became effective, nor drivers who were hired at a higher rate during the second 
period receive a pay raise.  Among drivers receiving a pay raise, the average increase is 39.5%.  
Finally, the average miles driven for each driver is 70,000 miles although these vary 
considerably depending on how long a driver is observed.  Finally, 38% of all the miles occurred 
during a winter month. 
 

{Insert table 2 here} 

CRASH COUNTS MODELS 
To examine the impact of compensation, work conditions, and driver demographic 
characteristics on crash frequency while controlling for driver exposure, we estimated a model 
where crash frequency is the dependent variable, and demographic and occupational variables 
are the independent variables.  When “count” dependent variables are treated as continuous 
variables, estimates derived using ordinary least squares regression can be inefficient, 
inconsistent, and biased (36).  We therefore applied regression models such as Poisson and 
negative binomial models which are the most appropriate modeling technique for data that have 
a large number of zeroes and a lower number of positive integer variables (37, 38).  In our case, 
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we observed zero crashes for 77.2% of drivers, one crash for 12.9%, two crashes for 6.4%, three 
crashes for 2.7%, and four or more crashes for less than 1 percent of drivers.  

 
Count models share similarities with linear regression models.  For example, both attempt 

to explain variation in the dependent variable with a set of independent variables.  They use a 
multivariate approach to isolate unique effects on the dependent variable.  However, they also 
have some significant differences.  Foremost is that count models assume that the expected 
number of counts have a certain probabilistic distribution (e.g., Poisson, negative binomial) with 
a conditional mean that depends on the independent variables observed.  As such, results of 
count regression models provide two related pieces of information.  On the one hand, they 
provide information regarding the influence of the independent variables on the expected count 
for each individual.  On the other hand, count models also provide information on the 
distribution of counts for each individual.  In our case, therefore, a count model will allow us to 
predict how the expected crash count varies for each individual with changes in an independent 
variable.  It also allows us to explore how the probability of zero crashes, one crash, two crashes, 
and so on, changes for each individual as compensation or work conditions vary.  We rely on 
both pieces of information provided by the models, since we believe they provide useful 
information for researchers and policy-makers. 

 
Poisson regression and negative binomial models arguably are the most popular count 

regression models.  The key distinction between the two is that the Poisson model requires that 
the mean of crash counts equal its variance, while the latter allows for differences between the 
mean and the variance of crash counts.  Such difference in the mean and variance may be the 
result of unobserved heterogeneity across drivers.  Because heterogeneity can also cause excess 
zeros, and in certain cases will always do so (39), we also examine the appropriateness of using 
zero-inflated models.  Indeed, Lee et al. (37) encourage the application of zero-inflated models in 
the presence of unobserved heterogeneity.  Zero inflated models assume that there are drivers 
that will always have a crash zero count and other drivers for whom the crash frequency can 
vary.  Thus the zero inflated models identify both processes separately, with a binary function 
such as a logit or probit equation for determining always-zero cases and a Poisson or negative 
binomial equation for modeling the counts.  This added flexibility of modeling crash counts may 
assist in crash prediction, and their results can suggest many specific relationships between 
independent variables and crash rates.  For details on the derivation of these count models, see 
Long (36). 
 

RESULTS 
Our research approach was to select the best fit among a number of count regression models as 
determined by visual inspection of predicted versus observed counts, likelihood ratio tests, non-
parametric tests, and prior theory (where appropriate).  Once we selected a preferred model, we 
evaluated the contribution of demographic and occupational characteristics to crash frequency.  
In addition to the different model specifications, we explored alternatives to incorporating the 
impact of miles driven (exposure) on crash rates.  

Preferred model selection 
Following the suggestion from Lee et al. (37) an examination of the empirical frequency 
distribution of crashes suggests that the variance of crashes exceeded the mean and that there 
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were a relatively high number of zero cases.  This evidence was indicative, although not 
conclusively, of a poor fit for the Poisson model.  Using the independent variables described in 
Table 2, we fit to the data four models: Poisson, negative binomial, and their zero-inflated 
counterpart models.  In addition, the natural log of the exposure variable (miles driven) was 
included in each model with its coefficient constrained to one.  This implied an assumption that 
the estimated crash rate increases linearly with exposure. 

 
To determine the best-fitting model we estimate a Poisson model to use as a baseline 

against which other models could be tested.  The three additional count models (negative 
binomial, zero-inflated Poisson, and zero-inflated negative binomial) were examined against this 
baseline model.  Likelihood ratio tests were used to determine the preferred model when these 
models were nested (as with the Poisson and the negative binomial model).  When one model is 
not nested within the other, we use non-parametric statistical test for comparing their fit as 
proposed by Vuong (for details see 40).  

 
Consistent with our expectations, results suggested that the zero-inflated Poisson model 

was the preferred model.  The preferred model was identified in two steps.  First, the 
overdispersion parameter in the zero-inflated negative binomial specifications was not 
significantly different from zero (0.468) leading to its rejection over the Poisson model (results 
not shown).  Second, the Vuong statistic comparing the zero-inflated Poisson model to the 
Poisson model (15.45) suggested that the former had better fit than the latter.  Visual inspection 
of observed minus predicted frequency by type of count model confirmed that the zero inflated 
Poisson model fit the data best.  Both the negative binominal and the Poisson models tended to 
underpredict zero counts and overpredict counts greater than zero.  Fitting the same models for 
different crash cost cutoff points (no cutoff point, $200, $1000 and $2000) instead of the $500 
initially specified also resulted in the selection of the zero-inflated Poisson model as the 
preferred regression model for this data.  Furthermore, the estimated coefficients for the results 
using different crash cost cutoff points for the dependent variable did not vary significantly from 
those discussed in the next section.  

 
Although we have no structural reason to believe that a zero inflation process occurs in 

the data (i.e., that certain truck drivers are risk-free of crash involvement while driving at least 
one mile), we specified a model that included a zero-inflation process.  This is because Cameron 
and Trivedi (39) suggest that in many cases unobserved heterogeneity can result in excess zeroes 
in addition to overdispersion.  Thus, specifying the model with a zero-inflation process was the 
result of practical rather than theoretical considerations.  For completeness, the estimated 
coefficients for the inflation equation cannot be interpreted separately from the coefficients of 
the count equation.  The practical implication is that the net effect of both equations on crash 
count should be considered at all times because failing to do so would have resulted in biased 
estimates. 

Estimated influence of human capital and driver occupational factors on crash frequency 
Results for the preferred count model are provided in Table 3, while results for the always-zero 
logit equations accompanying each count model are provided in Table 4.  The left set of columns 
in Table 3 (model 1) shows the preferred model specification with only demographic 
characteristics as independent variables and with total miles driven as an exposure variable.  The 
model explains 0.99% of the log-likelihood of the constant-only model (1- (-9,347.292/ -
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9,437.056)).  The importance of the unobserved heterogeneity created by excluding the human 
capital and occupational variables is reflected in the bias implicit in the estimated demographic 
variable coefficients.  Inclusion of the occupational and human capital variables (Model 2) 
increases the share of the log-likelihood explained to 7.84%, all else held equal.  This confirms 
the relevance of human capital and occupational factors in explaining crash frequency at the 
driver level, and indicates that information collected regarding crashes should include some level 
of occupational and human capital data for the involved driver.  Despite the statistical 
significance of model 2, it has a substantial amount of unexplained variance.  This is not entirely 
surprising given the stochastic nature of crash involvements and the relatively large sample size.  
However, several additional factors may contribute to improving the explanatory power of the 
model, such as additional driver-level factors (e.g. driving ability and ability to tolerate fatigue), 
vehicle factors (vehicle condition), other occupational factors (time spent waiting for loads, or 
loading and unloading, regularity of schedule, and hours worked/awake), and environmental 
factors (weather and quality of roads).  
 

{Insert table 3 here} 
 
In Table 3, the right-hand side column for the preferred model, labeled factor change, 

shows the change in the expected crash count given a change of one unit in the independent 
variable, holding all other variables constant.  The factor change in expected crash count is 
calculated as the exponential of the estimated coefficient for each variable.  This column is 
useful because, unlike linear regression, the coefficients estimated in count regression models do 
not indicate the effect of a unit change in the jth independent variable.  Similarly, the partial 
derivative of the function with respect to the jth independent variable (known popularly as the 
marginal effect) cannot be used to estimate such an effect because the function is not linear.  
Instead, the factor change provides information about how to relate each variable with the 
expected crash count. 

 
{Insert table 4 here} 

 
The coefficient estimated for the pay rate variable in the count equation for Model 2 

suggests that for every additional cent per mile a driver is paid, the expected crash count 
decreases by 8.15% (1-exp(-0.085)).  Evaluated at the mean pay rate of $0.30, this translates into 
an elasticity of crash count with respect to pay rate of –2.47.  However, because the pay 
coefficient in the always-zero equation has a positive sign, the estimated effect of the count 
equation underestimates the importance of pay rate.  Taking into account both equations jointly, 
the coefficients suggest that one-cent higher pay increase is related to a 2.22 % lower probability 
of observing one or more crashes.  Figure 1 shows how the probability of having a zero crash 
count varies as driver pay rate increases.  The probability in the y-axis accounts for the 
probability resulting from the inflation model and the count model.  As a proxy for unobserved 
human capital characteristics of drivers, this result implies that higher pay is associated with 
better driving records.  Unobserved human capital characteristics include driving experience, 
other work experience, and driver character and disposition, among others.  Interestingly, the 
coefficient for the dummy variable After indicates is not statistically significant.  This suggests 
that drivers who were hired after the pay raise were not inherently safer than drivers hired before 
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the pay raise, once we control for the human capital, occupational, and demographic variables 
noted before.  

 
{Insert Figure 1 here} 

 
Similar to results for pay rate, the coefficient for the percent pay raise variable in the 

count model and the inflation model jointly suggest that for every additional percentage point in 
the percent pay raise variable, drivers have a 0.23 percent lower expect crash frequency.  The 
coefficient for percent pay raise suggests that there appears to be a relevant motivational effect 
related to the pay increase that led drivers to have better safety records.  The coefficient for the 
dummy variable Cross, which accounts for the causality issue of who got a pay raise is positive 
but not statistically significant.  Although speculative, it is possible that the link between percent 
pay raise and crash risk may be mediated by a variable such as intent to quit.  At higher pay 
levels, drivers may be less likely to want to quit and therefore this accumulated experience may 
reflect positively in their driving record. 

 
For driver occupational factors, we find that the higher the miles driven during winter 

months the higher the expected crash count.  This probability, however, is moderated by the 
coefficient of the zero-inflation equation.  A similar moderation effect is detected for dispatches, 
where the zero-inflation equation suggests that more dispatches are associated with a higher 
probability of a crash, but the count equation suggests the opposite.  The effect captured by the 
zero-inflation equation is stronger than the effect captured by the count equation, suggesting 
overall that higher dispatches are associated with a lower probability of remaining crash-free. 
 

Finally, it is useful to standardize the independent variables and re-estimate the preferred 
model in order to identify the variables having the strongest influence on crash count.  After this 
re-estimation, model fit and the statistical significance of the independent variables remains 
identical but the newly estimated coefficient should be interpreted in units of standard deviation.  
Results of the count-model only suggest that driver pay, number of dispatches, and age are the 
strongest predictors of each driver’s crash count.  Thus, for example, an increase in one standard 
deviation of pay rate (from 30.3 to 37 cents/mile) is associated with a decrease in expected crash 
count of 43.6% A comparison with the standardized coefficient results of the always-zero 
equation reveals some insightful differences.  In the always-zero equation, occupational variables 
related to driving activity such as miles, dispatches, and miles driven during winter become 
stronger predictors than in the count model.  Similarly, tenure becomes a stronger predictor, but 
pay decreases in importance.  These results seem to suggest that even though driver pay does 
seem to be correlated with the occurrence of a crash, the correlation becomes stronger when 
crash frequency (as opposed to crash occurrence) is examined as the dependent variable.  A 
similar argument applies to percent pay raise, which was not significant in the always-zero 
equation and is significant in the count equation.  

Estimated influence of demographic factors on crash frequency 
While our primary interest lies with the impacts of human capital and occupational factors on 
driver safety, it is also useful to examine the estimated influence of control variables on crash 
frequency.  Obtaining reasonable results with respect to other variables lend credence to this 
exercise.  Consistent with prior literature (41-43), the coefficients estimated for the age variable 
suggest that the expected crash count diminishes as driver age increases, but at a decreasing rate.  
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Taking into account both equations simultaneously suggests that married individuals are 

7.07 percent less likely to have any crashes than non-married individuals.  The count-only model 
equation coefficient suggests that the expected crash count for married drivers is 0.89 times the 
count of non-married drivers, although this is an underestimate because the zero-always equation 
is not being taken into account.  Finally, looking at both models simultaneously we find that the 
probability of having no crashes for females is 6.9% lower than for males.  This contrasts with 
recent research (44) finding that, for the population at large, there is no difference between crash 
involvement rates by sex after controlling for annual miles driven.  
 

As with the age variable, the impact of tenure at the firm when first observed on expected 
crash count is also quadratic, a result that is consistent with the prior research (e.g., 27).  The 
estimated coefficient for tenure and its square suggest that the probability of having a zero count 
is highest when the driver has been with the firm for 5.81 years (Figure 1, right panel).  In 
contrast, the net crash count effect of a unit increase from the mean for dispatches or for the 
percent miles driven during winter is ambiguous because the effect of these two variables in the 
count equation and the always-zero equation are in opposing directions.  Finally, a somewhat 
surprising result relates to the two control variables introduced to address potential causality 
problems with the percent raise variable.  Coefficients for both dummy variables suggest that 
there is no difference in the expected crash count between drivers hired before and after the pay 
raise, all else held equal.  This does not mean, however, that there was no safety improvement 
before and after the pay raise.  The coefficients for the compensation variables suggest the 
opposite: that being hired at a higher pay or getting a pay raise contributed to improving the 
overall crash record of drivers.  

CONCLUSIONS  
Recent research has shown that human capital and occupational factors are important predictors 
of driver crash involvement as well as of unsafe behaviors such as speeding and violation of the 
hours-of-service rules.  Using a different methodological approach and a unique dataset, the 
results of this research support such evidence by showing that such factors are also important 
predictors of frequency of crash involvement.  In particular, higher pay rates and pay raises are 
related to lower expected crash counts and to a higher probability of zero crash counts, all else 
held equal.  

 
The results strengthen the limited empirical evidence linking structural occupational 

factors of drivers – such as economic rewards – with safety outcomes, and extend it by 
examining their effects on crash occurrence and frequency of occurrence.  The effect of tenure 
and age on expected crash count exhibits the expected nonlinear form, thereby suggesting that 
factors that keep drivers at jobs can also contribute to better safety outcomes.  Although the 
evidence provided here is not definitive, it may suffice to motivate changes in human resources 
and hiring practices for some firms.  Policy-makers can use this research to support efforts to 
investigate trucking labor markets using a broader framework that traces the impact of individual 
carrier compensation on the truck driver labor market and other related labor markets. 
 

Potential limitations of this study include the firm-specific nature of the data, which 
constrains the extent to which inferences about the truckload sector can be made, and that several 
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variables, such as driving experience and prior driving record, are not available for all 
observations.  However, comparisons between the current data and three surveys of the truckload 
sector suggest that the average characteristics of the drivers in this study seem comparable with 
those of the sector.  More importantly, the unavailability of certain variables can introduce bias 
to the coefficients of certain observed variables.  In practical terms, however, variables such as 
age, marital status, and tenure at the firm are expected to be reasonable proxies for unobserved 
variables such as driving experience.  A natural extension of this study is to include disaggregate 
data from other firms in order to understand the unique contribution of firm characteristics, such 
as financial performance and size, to driver safety.  Such an approach will also provide the 
possibility of determining the extent to which pay solely is a proxy for human capital 
characteristics or if it plays a broader role in motivating employees.  At the driver level, other 
extensions of this study include marrying these types of disaggregate, driver-level data sources 
with other driver-related variables such as driving hours and non-driving work hours.  Similarly, 
the combination of driver-level data and firm-level data to study the effects of policies such as 
driver education, compensation, or operating policy that varies by firm. 
 

From the modeling perspective, zero-inflated models improve model fit but reduce the 
interpretability of the results.  Unbiased estimates of expected crash count and of the 
probabilities of particular crash counts other than zero are not readily available for these models 
because of the nature of the zero-always inflation equation.  Although Poisson and negative 
binomial models are more practical and provide conceptual simplicity, we find that the more 
sophisticated zero-inflated models provide enough information to yield useful results while 
reducing the possibility of introducing bias in the estimated coefficient.  The amount of 
unexplained variation points to the fact that other factors than the ones included in these models 
are important to explain truck crashes.  A comprehensive model should include firm 
characteristics, vehicle factors, environmental factors and roadway factors along with driver 
factors.  The lack of available data on all of these variables remains an important problem.  
Despite this, the results provide continued indication of the relevance of accounting for 
occupational and human capital variables in the study of truck driver safety.  Failing to do so 
may results in biased results of limited value to policy-makers and researchers. 
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Table 1.  Comparison between JB Hunt data and other data sources for the truckload 
sector 

Variable 

JB Hunt UMTIP 
driver 
survey 

Signpost and 
UMTIP firm 

survey 

Truckload 
Carriers 

Association 
Age (years) 39.69 42.18 n.a. 41.0 
Race (1 = Non-white) 22.7% 14% n.a. n.a. 
Married 48% 69% n.a. n.a. 
Tenure at firm when first observed (yrs) 1.20 3.46 n.a. 4.2 
Base pay (cents/mi) 30.28 28.6 28.6 n.a. 
Miles per dispatch 575.8 858.0 905.9 686.0 

 



 

 

Table 2.  Summary statistics and variable explanation (N=11,540) 
Variable label Explanation Mean St. Dev. Min Max 
DEMOGRAPHIC     
Age Mean driver age  39.69 10.14 20 76 
Female = 1 if female driver, = 0 otherwise 0.04 0.19 0 1 
Married = 1 if married, = 0 otherwise 0.48 0.50 0 1 
COMPENSATION     
Pay Pay (cents/mile) when hired  30.28 6.73 16 49 
%Raise Percentage pay raise 9.16 19.45 0 123.53 
HUMAN CAPITAL      
Race  = 1 if non-white, = 0  otherwise 0.23 0.42 0 1 
Tenure Tenure at firm when first observed (years) 1.20 2.16 0.08 19.17 
OCCUPATIONAL     
Miles Million miles driven during observed period 0.07 0.08 0 0.5 
Mile_win Percentage of miles driven during winter 

season (December – March) 
0.38 0.33 0 1 

Dispatch  Total number of dispatches during observed 
period 

128.63 138.86 1 940 

OTHER CONTROL VARIABLES     
Cross =1 if driver was hired before the pay raise 

period and received a pay raise, = 0 otherwise 
0.24 0.42 0 1 

After = 1 if driver was hired after the pay raise 
occurred, = 0 otherwise 

0.36 0.48 0 1 

DEPENDENT VARIABLE     
Crash_ct Crash count per driver 0.38 0.81 0 8 

 



 

 

Table 3.  Zero-inflated Poisson crash models  
 Model 1  Model 2 

Variable Coefficient T-statistic Coefficient T-statistic Factor 
change 

Standardized 
Coefficients 

Constant 4.761*** 19.660 6.087*** 18.150 2.690 
DEMOGRAPHIC     
Age -0.103*** -8.650 -0.038*** -3.100 0.963 -0.383 
Age2 0.001*** 7.530 0.001*** 4.020 1.001 0.484 
Female 0.571*** 5.460 0.189* 1.690 1.208 0.035 
Married -0.197*** -4.550 -0.112*** -2.430 0.894 -0.056 
COMPENSATION     
Pay  -0.085*** -8.890 0.919 -0.572 
%Raise  -0.008*** -3.940 0.992 -0.163 
HUMAN CAPITAL    
Race  0.160*** 3.310 1.173 0.067 
Tenure  -0.056* -1.720 0.946 -0.121 
Tenure2  0.006* 1.860 1.006 0.111 
OCCUPATIONAL    
Miles 1.000 1.000   
Mile_win  0.417*** 3.570 1.517 0.136 
Dispatch  -0.003*** -13.350 0.997 -0.446 
OTHER CONTROL VARIABLES   
Cross  0.136 1.190 1.146 0.058 
After  0.144 1.050 1.155 0.069 
     
Log-L full model -9347.292 -8,394.167   
Log-L constant-only (1) -9437.056 -9,052.593   
LR test (model 2 vs. 1)  -1906.25   
Rho-square 0.99% 7.84%   
N 11,540 11,540   
Vuong statistic 16.650*** 15.450***   
***   Significant at a 99% confidence level 
**   Significant at a 95% confidence level 
*     Significant at a 90% confidence level 
(1) Log-likelihood of constant-only model varies from model 1 to model 2 because the likelihood at convergence 

of the zero-always logit model differs for both models.  
 



 

 

Table 4.  Logit zero-always inflation equations (1) 

1 = non-crash state Model 1  Model 2 

Variable Coefficient t-statistic Coefficient t-statistic Standardized 
Coefficients 

Constant -0.117 -0.770 -1.073*** -2.660 0.187 
DEMOGRAPHIC    
Age -0.002 -0.660 -0.010*** -2.450 -0.103 
Female 0.487*** 2.690 0.494*** 2.550 0.092 
Married 0.257*** 3.220 0.239*** 2.850 0.120 
COMPENSATION    
Pay  0.043*** 2.820 0.290 
%Raise  0.004 1.050 0.084 
HUMAN CAPITAL    
Race  -0.296*** -3.140 -0.124 
Tenure  0.142*** 2.370 0.306 
Tenure2  -0.011* -1.710 -0.203 
OCCUPATIONAL    
Miles  6.812*** 4.140 0.563 
Mile_win  0.805*** 4.230 0.262 
Dispatch  -0.005*** -4.780 -0.712 
OTHER CONTROL VARIABLES   
Cross  -0.225 -1.030 -0.096 
After  0.158 0.730 0.076 
***   Significant at a 99% confidence level 
**   Significant at a 95% confidence level 
*     Significant at a 90% confidence level 
 (1)  The inflation process models the probability of remaining in non-crash state (zero-always), which is the 

opposite of the count model.  As such, the coefficients are expected, although not required, to have different 
signs in the inflation model than in the count model. 



 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Estimated variations in the probability of having no crashes with changes in pay 
rate (left panel) and tenure (right panel) 
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